

Problem 1 (2 points)

(a: 1.5 points) Give the Thévenin equivalent between A and B by calculating V_{TH} (1 point) and R_{TH} (0.5 points) using only the Thevenin-Norton concepts to analyze this problem.

(**b: 0.5 points**) If you connect a resistor RL across the terminals A and B then calculate the current that flows through this resistor.

(b) Current through RL: (0.5 points) $IL = V_{TH} [1/(R_L + R_{TH})]$

Problem 2 (2 points)

Ideal opamp: V+=V-

Consider a circuit with input of N voltage sources Vi (i=1, 2, ...N). The resistor R is connected to the input of the ideal opamp via an additional voltage source Vs.

(a) Calculate the potential V+ (1 point)

(b) Calculate the output voltage V_0 as a functions of Vi's, V_s , and the resistors of the circuit shown above (1 point).

(a) The sum of the currents via Virs equals the current that flows via R (k-law 1): $\sum_{i=1}^{N} I_i = I_R(1)$ $I_i = \frac{V_i - V_t}{R_i}$ (2) $I_{R} = \frac{V_t - V_s}{R}$ (3)

 $(1,2,3) = 7 \stackrel{\sim}{\underset{i=1}{\overset{\sim}{\sum}} \frac{V_{i}-V_{t}}{R_{i}} = \frac{V_{t}-V_{s}}{R} = 7$ $V_{+}\left(\underbrace{\underbrace{\mathcal{E}}_{\mathbf{r}_{i}}^{+}+\underbrace{I}_{\mathbf{r}_{i}}^{+}\right)=\underbrace{\underbrace{\mathcal{E}}_{\mathbf{r}_{i}}^{+}}_{\mathbf{r}_{i}}\underbrace{\underbrace{\mathsf{V}}_{\mathbf{r}_{i}}^{+}+\underbrace{\mathsf{V}}_{\mathbf{r}_{i}}^{+}}_{\mathbf{r}_{i}}\underbrace{\mathsf{R}}_{\mathbf{r}_{i}}^{+}+\underbrace{\mathsf{V}}_{$ (b) $V_{4} = V_{-}$, $V_{-} = V_{6} - \frac{R_{7}}{R_{7} + R_{6}}$ (5) From (4) f(s) since VI = V- for Ideal Opomp We obtain $V_{0} = \left(\frac{R_{7}}{R_{7} + R_{6}}\right) = \frac{\sum_{i=1}^{N} \frac{Y_{i}}{R_{i}} + \frac{Y_{s}}{R}}{\sum_{i=1}^{N} \frac{Y_{i}}{R_{i}} + \frac{Y_{s}}{R}} = P$ $V_{0} = \left(\frac{1 + \frac{R_{6}}{R_{4}}}{R_{4}}\right) = \frac{\sum_{i=1}^{N} \frac{Y_{i}}{R_{i}} + \frac{Y_{s}}{R}}{\sum_{i=1}^{N} \frac{Y_{i}}{R_{i}} + \frac{Y_{s}}{R}}$

Problem 3 (1.5 points)

Consider the circuit (Wien bridge oscillator):

(a) Calculate the transfer ratio $A=V_3/V_1$ (V+=V-; 0.5 points) (b) Calculate the transfer ratio $B=V_5/V_3$. For what value of ωRC is B real (0.5 points)? (c) For what value of R_1 / R_2 is AB = 1? (0.5 points).

(a) V+=V1, V-=V3{R2/[R2+R1]} (voltage divider) V+=V- \rightarrow V1=V3{R2/R2+R1} \rightarrow A=V3/V1=1+(R1/R2)

(b) In the more general case we have:

For $\omega = 1/RC$ B=V5/v3 is real \rightarrow B=1/3

(c) AB=1, since $B=1/3 \rightarrow A=3 \rightarrow R1/R2=2$ Under these condition we have formed the Wien Oscillator

Problem 4 (1.5 points)

(a:0.5 points) The diode is ideal with forward conduction voltageVc. Calculate the current through the resistor RL.

(b1: 0.5 point) Find which diode conducts current [*the diodes Di* (*i*=1,2,3) are ideal with voltage for forward conduction Vc=0.5 V].
(b2: 0.5 point) Calculate current via the resistor R

(or)
Define
$$V_L = V \frac{R_L}{R+RL}$$
 the potential
on R_L if the Diode is acbsent.
If $V_L < V_C = P$ Diode is not conducting = P
 $T_{R_L} = \frac{V/R+RL}{R_L}$
If $V_L > V_C = P$ Diode is conducting = P
 $T_{R_L} = \frac{V_C}{R_L}$

b1) <u>Only D2 conducts</u>. This is because if we denote with V the three input voltages (1, 2, 5 V) then the voltage difference V-2 only for D2 is larger than Vc (V-2 > Vc) to support forward conduction. (1 point)

b2) I=[(5-Vc)-2]/R = 2.5/R (1 point)

Problem 5 (1.5 points)

Design a synchronous counter that goes through the states (use J-K flip flops) 0, 1, 2, 4, 5, 6 shown below:

<u>Befo</u>	ore	<u>state</u>	<u>After state</u>				
Q3	Q2	Q1	Q3 Q2 Q1				
0	0	0					
0	0	1					
0	1	0					
1	0	0					
1	0	1					
1	1	0					

Q _{n-1}	Q _n	J	К
0	0	0	*
0	1	1	*
1	0	*	1
1	1	*	0

*: don't care

J	К	Q _n
0	0	Q _{n-1}
0	1	0
1	0	1
1	1	Q _{n-1}

Before state		After state		Flip-Flop Inputs							
Q3	Q2	Q1	Q3	Q2	Q1	J3	K3	J2	K2	J1	K1
0	0	0	0	0	1	0	х	0	х	1	Х
0	0	1	0	1	0	0	X	1	x	X	1
0	1	0	1	0	0	1	Х	X	1	0	X
1	0	0	1	0	1	X	0	0	X	1	Х
1	0	1	1	1	0	X	0	1	x	X	1
1	1	0	0	0	0	X	1	X	1	0	X

J3=K3=Q2, J2=Q1, K2=1, J1=Q2, K1=1

Problem 5 (1.5 points)

An application of a small varying input signal vi leads to small variation of the gate, drain, and source potentials :

If we connect a load resistor RL at output of the drain D (and the ground Vss=0), then show that the amplification ratio U_0/U_i is given by:

$$\frac{v_o}{v_i} = -\frac{g_m (R_D // R_L)}{1 + g_m R_S + [(R_D // R_L + R_S) / r_d]}$$

(1-method: first priciples analysis) *This is only for tough cookies!*

substitute in (4) from (5) the Us and replace also Ug=Ui, Ud=Va

$$U_{o}\left(1+\frac{Rp}{PL}\right) = -\left[g_{m}\left(U_{i}+U_{o}\frac{Rs}{RpL}\right)+U_{o}\frac{1+\frac{Ks}{RpL}}{V_{i}}\right]Rp$$

$$U_{o}\left(\frac{1}{Rp}+\frac{1}{PL}\right) = -g_{m}U_{i} - g_{m}U_{o}\frac{Rs}{PpL} = V_{o}\frac{RpL+Rs}{V_{i}RpL}$$

Although this looks complicated, this is what is happening in reality!

you can extend this approach beyond first order perturbation theorya limitation for method-2 as follows!. (2-method: small signal cicuit) This is for normal cookies!

Replace in all shown bellow: RD with RD//RL. This is because in this design RD parallel with RL

$$g_{m}v_{gs} + (v_{o} - v_{s})/r_{d} - v_{s}/R_{s} = 0 \quad (S)$$

$$(v_{o}/R_{D}) + (v_{s}/R_{s}) = 0 \quad (E)$$

$$v_{gs} = v_{g} - v_{s}$$

$$\downarrow$$

$$v_{g} = v_{i}$$
Gain: $v_{o}/v_{i} = -g_{m}R_{D}/[1 + g_{m}R_{s} + (R_{s} + R_{D})/r_{d}]$

To have the desired result replace : $RD \rightarrow RD//RL$