Final exam Solutions

Problem 1 (2 points)

(a: 1.5 points) Give the Thévenin equivalent between A and B by calculating $\mathrm{V}_{\text {тн }}$ (1 point) and R_{TH} (0.5 points) using only the Thevenin-Norton concepts to analyze this problem.
(b: 0.5 points) If you connect a resistor R_{L} across the terminals A and B then calculate the current that flows through this resistor.

Solution
(a) $R_{\text {TH }}=$?

(0.5 points)

$V_{T H}=?$
stee 1:

(1 point)
step 2

$$
-I+\frac{V}{R_{1}}
$$

(b) Current through RL: (0.5 points) $\mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\mathrm{TH}}\left[1 /\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{TH}}\right)\right]$

Problem 2 (2 points)

Ideal opamp: $\mathbf{V}+=\mathbf{V}$ -

Consider a circuit with input of N voltage sources $\mathrm{V}_{\mathrm{i}}(\mathrm{i}=1$, $2, \ldots \mathrm{~N}$). The resistor R is connected to the input of the ideal opamp via an additional voltage source Vs.
(a) Calculate the potential V_{+}(1 point)
(b) Calculate the output voltage V_{o} as a functions of Vi's, V s, and the resistors of the circuit shown above (1 point).

Solution
(a) The sum of the curronts via $V i$'s eguals the current that flows via R (K-low 1):

$$
\begin{align*}
& (K-l o w ~ 1): \tag{2}\\
& \sum_{i=1}^{N} I_{i}=I_{R}(2) \quad I_{i}=\frac{V_{i}-V_{+}}{R_{i}} \tag{3}\\
& I_{R}=\frac{V_{+}-V_{s}}{R}
\end{align*}
$$

$$
\begin{align*}
& (1,2,3)=8 \quad \sum_{i=1}^{N} \frac{V_{i}-V_{+}}{R_{i}}=\frac{V_{+}-V_{s}}{R}=0 \\
& V_{+}\left(\sum_{i=1}^{M} \frac{1}{R_{i}}+\frac{1}{R}\right)=\sum_{i=1}^{N} \frac{V_{i}}{R_{i}}+\frac{V_{s}}{R} \Rightarrow \\
& \sum_{i=1}^{N} \frac{V_{i}}{R_{i}}+\frac{V s}{R} \tag{4}\\
& \sum_{i=1}^{N} \frac{f}{R_{i}}+\frac{1}{R}
\end{align*}
$$

(b)

$$
V_{4}=V_{-}, \quad V_{-}=V_{0} \frac{R_{7}}{R_{7}+R_{6}}(s)
$$

From (4) $f(5)$ since $V_{t}=V$ - sor Ideal opomp we obtam

$$
V_{0}=\left(1+\frac{R 6}{R_{7}}\right) \frac{\sum_{i=1}^{N} \frac{V_{i}}{R_{i}}+\frac{V_{s}}{R}}{\sum_{i=1}^{N} \frac{1}{R_{i}}+\frac{1}{R}}
$$

Problem 3 (1.5 points)

Consider the circuit (Wien bridge oscillator):

(a) Calculate the transfer ratio $\mathrm{A}^{=} \mathrm{V}_{3} / \mathrm{V}_{1}\left(\mathrm{~V}_{+}=\mathrm{V}_{-} ; 0.5\right.$ points)
(b) Calculate the transfer ratio $\mathrm{B}=\mathrm{V}_{5} / \mathrm{V}_{3}$. For what value of $\omega \mathrm{RC}$ is B real (0.5 points)?
(c) For what value of R_{1} / R_{2} is $A B=1$? (0.5 points).

Solution

(a) $\mathrm{V}+=\mathrm{V} 1, \quad \mathrm{~V}-=\mathrm{V} 3\{\mathrm{R} 2 /[\mathrm{R} 2+\mathrm{R} 1]\}$ (voltage divider) $\mathrm{V}+=\mathrm{V}-\rightarrow \mathrm{V} 1=\mathrm{V} 3\{\mathrm{R} 2 / \mathrm{R} 2+\mathrm{R} 1\} \rightarrow \mathrm{A}=\mathrm{V} 3 / \mathrm{V} 1=1+(\mathrm{R} 1 / \mathrm{R} 2)$
(b) In the more general case we have:

$$
\begin{aligned}
\frac{V 5}{V 3} & =\frac{Z_{2}}{Z_{1}+Z_{2}} \\
Z_{1} & =R+\frac{1}{j \omega C}=\frac{j \omega R C+1}{j \omega C} \\
\frac{1}{Z_{2}} & =\frac{1}{R}+j \omega C=\frac{1+j \omega R C}{R} \rightarrow Z_{2}=\frac{R}{1+j \omega R C}
\end{aligned}
$$

$$
V_{5}=\frac{R}{1+j \omega R C}=R
$$

$$
\frac{V 5}{V 3}=\frac{\overline{1+j \omega R C}}{\frac{j \omega R C+1}{j \omega C}+\frac{R}{1+j \omega R C}}=\frac{R}{\frac{1+2 j \omega R C-\omega^{2} R^{2} C^{2}}{j \omega C}+R}=\frac{j \omega}{1-\omega^{2} R^{2} C^{2}}
$$

$$
\begin{array}{ccc}
j \omega C & 1+j \omega R C & j \omega \\
1 & 1 &
\end{array}
$$

$$
=\frac{1}{\frac{1-\omega^{2} R^{2} C^{2}}{j \omega R C}+3}=\frac{1}{3-j \frac{1-\omega^{2} R^{2} C^{2}}{\omega R C}}
$$

For $\omega=1 / R C \quad B=V 5 / v 3$ is real $\rightarrow B=1 / 3$
(c) $\mathrm{AB}=1$, since $\mathrm{B}=1 / 3 \rightarrow \mathrm{~A}=3 \rightarrow \mathrm{R} 1 / \mathrm{R} 2=2$

Under these condition we have formed the Wien Oscillator

Problem 4 (1.5 points)

(a:0.5 points) The diode is ideal with forward conduction voltageVc. Calculate the current through the resistor RL.

(b1: 0.5 point) Find which diode conducts current [the diodes Di ($i=1,2,3$) are ideal with voltage for forward conduction $V c=0.5 \mathrm{~V}]$. (b2: 0.5 point) Calculate current via the resistor R

Solution

$$
\text { Define } V_{l}=V \frac{R_{L}}{R+R_{L}} \text { the potential }
$$

(α on R_{L} if the Diode is absent.

If $V_{L}<V_{C} \Rightarrow$ Diode is not conducting $=P$

$$
I_{R_{L}}=V / R+R_{L}
$$

Of. $V_{L} \geqslant V_{C}=$ Diode is conducting $=P$

$$
I_{R_{L}}=\frac{V_{C}}{R_{L}}
$$

b1) Only D2 conducts. This is because if we denote with V the three input voltages $(1,2,5 \mathrm{~V})$ then the voltage difference V -2 only for D 2 is larger than Vc $(\mathrm{V}-2>\mathrm{Vc})$ to support forward conduction. (1 point)
b2) $\mathrm{I}=[(5-\mathrm{Vc})-2] / \mathrm{R}=2.5 / \mathrm{R}(1$ point $)$

Problem 5 (1.5 points)

Design a synchronous counter that goes through the states (use J-K flip flops) 0, 1, 2, 4, 5, 6 shown below:

Q_{n-1}	Q_{n}	J	K
0	0	0	$*$
0	1	1	$*$
1	0	$*$	1
1	1	$*$	0

J	K	Q_{n}
0	0	Q_{n-1}
0	1	0
1	0	1
1	1	$\overline{Q_{n-1}}$

*: don't care

Solution

Before state			$\underline{\text { After state }}$			Flip-Flop Inputs					
Q3	Q2	Q1	Q3	Q2	Q1	J3	K3	J2	K2	J1	K1
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	1	0	0	1	X	X	1	0	X
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	0	0	0	X	1	X	,	0	X

$\mathrm{J} 3=\mathrm{K} 3=\mathrm{Q} 2, \quad \mathrm{~J} 2=\mathrm{Q} 1, \mathrm{~K} 2=1, \quad \mathrm{~J} 1=\mathrm{Q} 2, \quad \mathrm{~K} 1=1$

Problem 5 (1.5 points)

An application of a small varying input signal ui leads to small variation of the gate, drain, and source potentials :

If we connect a load resistor RL at output of the drain D (and the ground Vss=0), then show that the amplification ratio $\mathrm{Uo} / \mathrm{Ui}$ is given by:

$$
\frac{v_{o}}{v_{i}}=-\frac{g_{m}\left(R_{D} / / R_{L}\right)}{1+g_{m} R_{S}+\left[\left(R_{D} / / R_{L}+R_{S}\right) / r_{d}\right]}
$$

Solution
(1-method: first priciples analysis) This is only for tough cookies!

$$
\begin{align*}
& U_{g} \equiv U_{i} \\
& U_{c} \equiv U_{d} \\
& i d=g_{m}\left(U_{g}-U_{s}\right)+\frac{U_{d}-U_{s}}{r_{d}} \\
& \tilde{I_{D}}=I_{D}+I_{L} \quad(1) \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& V_{0}=V_{D D}-\tilde{I}_{D} \cdot R_{D}=0 \text { the averiation } \Rightarrow \delta \tilde{I}_{D}=i d+i L \\
& \delta V_{0}=U_{0}=\delta V_{D D}^{0}-\delta \tilde{I}_{D} \cdot R_{D} \Rightarrow(Q)
\end{aligned}
$$

$$
\begin{aligned}
& \delta V_{0}=V_{0}=-\left(i_{d}+i_{L}\right) R_{D}(2) \\
& \delta V_{0}=V_{0}=
\end{aligned}
$$

$$
\begin{aligned}
& V_{0}=-\left(L_{d}+i_{L}\right) K_{D} \\
& V_{0}=I_{L} \cdot R_{L}=\delta V_{0}=V_{U} \cdot R_{L}=P \\
& i_{L}=V_{0} / R_{L}(3)
\end{aligned}
$$

$$
\begin{aligned}
& V_{0}=I_{L} \cdot R_{L}=r \quad i_{i} \\
& U_{0}=i_{L} \cdot R_{L}=\frac{U_{L} / R_{L}(3)}{i d R_{D}}
\end{aligned}
$$

$$
\begin{aligned}
& U_{0}=i_{L} R_{L}=D \quad U_{0}=-i d R_{D}-U_{0} \frac{R_{D}}{R L L_{L}}=p \\
& (2) f(3)=P R_{D} 7=-i d R_{D}(4)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } f(3)=P U_{0}=-i d R_{D}(4) \\
& \left.=\frac{U_{0}}{R_{L}}\right]=-i l l \\
& \text { need to eliminate in }
\end{aligned}
$$

we still need to eliminate in id the potential Us
$(1)=P \frac{\overbrace{V_{D D}-V_{0}}^{I_{D}}}{I_{D S}}=\frac{\overbrace{V_{s}-0}^{I_{S}}}{V_{0}}+\frac{\overbrace{V_{0}-0}^{R_{L}}}{V_{R}}$, ta he or variation

$$
\frac{U_{S}}{R_{S}}=-U_{0}\left[\frac{1}{R_{0}}+\frac{1}{R_{i}}\right]=D \quad U_{S}=-U_{0} \frac{R_{S}}{R_{D i}}, \begin{gathered}
R_{D}=R_{D} \| R \\
(5)
\end{gathered}
$$

substitute in (4) from (5) the Us and replace alse $U_{g}=U_{i}, U_{d}=V_{0}$

$$
\begin{aligned}
& U_{0}\left[1+\frac{R_{D}}{R_{i}}\right]=-\left[g_{m}\left(U_{i}+U_{0} \frac{R_{S}}{R_{D L}}\right)+U_{0} \frac{1+\frac{R_{S}}{R_{D L}}}{r_{d}}\right] R_{D} \\
& U_{0}\left[\frac{1}{R_{D}}+\frac{1}{R_{i}}\right]=-g_{m} V_{i}-g_{m} V_{0} \frac{R_{S}}{R_{D L}}=V_{0} \frac{R_{D L}+R_{S}}{V_{d} R_{D L}} \\
& \frac{U_{0}}{R_{D L}} \neq g_{m} U_{0} \frac{R_{S}}{R_{D L}+V_{0} \frac{R_{D L}+R_{S}}{r_{d} R_{D L}}=-g_{m} V_{i}=\phi} \\
& U_{0}\left[1+g_{m} R+\frac{R_{D L}+R_{S}}{V_{d}}\right] \frac{1}{R_{D L}}=-g_{m} V_{i}=P \\
& \frac{U_{0}}{V_{i}}=-\frac{R_{D L}}{V_{S}+\frac{R_{D L}+R S}{V_{d}}}
\end{aligned}
$$

Although this looks complicated, this is what is happening in reality!
you can extend this approach beyond first order perturbation theorya limitation for method -2 as follows!.
(2-method: small signal cicuit) This is for normal cookies!

Replace in all shown bellow: RD with $\mathrm{RD} / / \mathrm{RL}$. This is because in this design RD parallel with RL

$$
\begin{aligned}
& g_{m} v_{g s}+\left(v_{o}-v_{s}\right) / r_{d}-v_{s} / R_{s}=0 \\
& \left(v_{o} / R_{D}\right)+\left(v_{s} / R_{s}\right)=0 \\
& v_{g s}=v_{g}-v_{s} \\
& v_{g}=v_{i}
\end{aligned}
$$

Gain: $v_{o} / v_{i}=-g_{m} R_{D} /\left[1+g_{m} R_{s}+\left(R_{s}+R_{D}\right) / r_{d}\right]$

To have the desired result replace : $\mathrm{RD} \rightarrow \mathrm{RD} / / \mathrm{RL}_{\mathrm{L}}$

